АГРОНОМИЯ

УДК 631.861:631.895:631.812.12

О.И. Антонова, Е.М. Комякова, В.В. Калпокас О.І. Antonova, Ye.M. Komyakova, V.V. Kalpokas

ДЕЙСТВИЕ ОРГАНОМИНЕРАЛЬНЫХ УДОБРЕНИЙ ИЗ ПОМЕТА НА УРОЖАЙНОСТЬ И КАЧЕСТВО ЗЕРНА ОЗИМОЙ И ЯРОВОЙ ПШЕНИЦЫ, СОДЕРЖАНИЕ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ И БИОГЕННОСТЬ ПОЧВЫ

THE ACTION OF ORGANO-MINERAL FERTILIZERS FROM MANURE
ON THE YIELD AND GRAIN QUALITY OF WINTER AND SPRING WHEAT,
SOIL NUTRIENT CONTENT AND SOIL BIOGENESITY

Ключевые слова: биокомпосты, органоминеральные удобрения на основе помета, озимая, яровая пшеница, качество урожая, биологическая активность.

Установлено действие органоминеральных удобрений из пометных биокомпостов (ОМУ П с Санвит-К и ОМУ П с Тамир) при локальном припосевном внесении под озимую и яровую пшеницу на черноземных почвах лесостепной зоны. Внесение ОМУ П с Санвитом-К в дозе 0,5 ц/га обеспечило повышение урожайности озимой пшеницы на 46% и содержание клейковины на уровне 26,8% против 25,2% на контроле. ОМУ с Санвит-К в дозах 0,5; 1 и 1,5 ц/га повысили урожайность зерна яровой пшеницы на 9-26,2%, содержание белка – до 14,5-16,6% против 14,2% и клейковины - до 28,8-30,0% против 21,2%. ОМУ с Тамир обеспечили прирост урожайности на 18-23.8%, содержание белка – 14.9-17.6, а клейковины – 24-26%. При этом внесение азофоски в дозе 0,5 ц/га увеличило урожайность на 19,7%, содержание белка – 17,3 и клейковины – 27,2%. Органоминеральные удобрения в большинстве случаев не уступали азофоске. Важной особенностью действия ОМУ было повышение биогенности почвы, превосходящее действие азофоски.

Антонова Ольга Ивановна, д.с.-х.н., проф. каф. почвоведения и агрохимии, Алтайский государственный аграрный университет. E-mail: niihim1@mail.ru.

Комякова Евгения Михайловна, к.с.-х.н., зав. лаб., каф. почвоведения и агрохимии, Алтайский государственный аграрный университет. E-mail: niihim1@mail.ru.

Калпокас Владас Владаславович, аспирант, каф. почвоведения и агрохимии, Алтайский государственный аграрный университет. E-mail: niihim1@mail.ru.

Keywords: biocomposts, manure-based organo-mineral fertilizers (OMF), winter wheat, spring wheat, crop quality, biological activity.

The effect of organo-mineral fertilizers from manure biocomposts (chicken manure based OMF with Sanvit-K and chicken manure based OMF with Tamir) was studied at local seedbed application under winter and spring wheat on chernozem soils of the forest-steppe zone. The application of OMF with Sanvit-K in a dose of 0.05 t ha increased winter wheat yield by 46% and ensured gluten content of 26.8% as compared to 25.2% in the control. OMF with Sanvit-K in doses of 0.05; 0.1 and 0.15 t ha increased summer wheat grain yield by 9-26.2%, protein content up to 14.5-16.6% as compared to 14.2%, and gluten content - up to 28.8-30.0% as compared to 21.2%. OMF with Tamir increased the yield by 18-23.8%, protein content of 14.9-17.6%, and gluten content - 24-26%. At the same time, the application of NPK fertilizer at a rate of 0.05 t ha increased the yield by 19.7%; the protein content made 17.3% and gluten content - 27.2%. In most cases the organo-mineral fertilizers were not inferior to NPK fertilizer. An important feature of the OMF action was the increase of soil biogenesity which was superior to the action of NPK fertilizer.

Antonova Olga Ivanovna, Dr. Agr. Sci., Prof., Chair of Soil Science and Agro-Chemistry, Altai State Agricultural University. E-mail: niihim1@mail.ru.

Komyakova Yevgeniya Mikhaylovna, Cand. Agr. Sci., Head of Laboratory, Chair of Soil Science and Agro-Chemistry, Altai State Agricultural University. E-mail: niihim1@mail.ru.

Kalpokas Vladas Vladaslavovich, post-graduate student, Chair of Soil Science and Agro-Chemistry, Altai State Agricultural University. E-mail: niihim1@mail.ru.

Введение

Ежегодно сельскохозяйственное производство России дает более 500 млн т органических отходов, из них более 300 млн т приходится на животноводство и птицеводство, в которых содержится около 2 млн т азота, 1 млн т фосфора и калия, или в сумме более 4 млн т д.в., при этом с минеральными удобрениями вносится всего 2,3-2,5 млн т [3].

В Алтайском крае накапливается около 7 млн т отходов животноводства и птицеводства, в т.ч. около 5 млн т навоза КРС и более 0,5 млн т помета. Суммарное количество NРК в этих отходах составляет 137 тыс. т д.в., что в 3 раза превышает количество вносимых минеральных удобрений (44,3 тыс. т д.в.).

Полное использование навоза и помета позволит на каждый гектар возвратить до 75 кг д.в. [1, 3].

Особенно богат питательными веществами куриный помет: однако из-за наличия в нем опасных для человека возбудителей болезней он относится к 3-му классу опасности, что сдерживает его применение в свежем виде.

По основному назначению в качестве органического удобрения его можно использовать после проведения длительного компостирования, применения различных способов утилизации: использованием метода наземной биоутилизации и биоферментации в биореакторах [4, 5].

Учитывая негативные стороны длительного компостирования (загрязняется среда), дороговизну аэробной твердофазной биоферментации, сушку, многие исследователи больше склоняются к использованию биологически активных препаратов для проведения ускоренного компостирования. Когда в помете сохраняются его полезные качества, он обогащается микроорганизмами и не теряется азот [2, 7].

Снижение почвенного плодородия, по мнению ряда ученых, можно устранить путем экосистемного подхода рационального ведения сельскохозяйственного производства на основе корпорации птицеводства и растениеводства, которая даст развитие обеим отраслям [6]. Так как эти отрасли связаны, растениеводство дает корма для птицеводства (производство продукции птицеводства на 70% зависит от зерновых), и при этом в помет переходит до 75% непереваренных органических веществ корма [5, 9].

Приводится много результатов эффективного действия компостов и органоминеральных удоб-

рений, полученных из помета на урожайность различных сельскохозяйственных культур.

Накоплен определенный опыт применения препаратов из эффективных микроорганизмов для получения биокомпостов, применение которых сопровождается увеличением урожайности, улучшением качества продукции и устойчивости растений к болезням [4, 8].

Грануляция биокомпостов позволит расширить удобряемые площади за счет локального припосевного внесения удобрения одновременно с посевом [6].

Целью исследований явилось изучение эффективности локального припосевного внесения органоминеральных удобрений, полученных из биокомпостов на основе куриного помета при возделывании зерновых культур.

Предусматривалось изучение действия разных доз ОМУ с использованием препарата «Санвит-К» в дозе 100 г/т помета и «Тамира» в дозе 0,5 л/т на обеспеченность почвы питательными веществами, потребление их растениями, биологическую активность почвы, урожайность и качество зерна озимой и яровой пшеницы.

Объекты и методы исследований

Заложено 2 производственных опыта на черноземах выщелоченных среднемощных, среднегумусных, среднесуглинистых с озимой и яровой пшеницей. Почвы опытных участков, соответственно, характеризовались слабокислой и нейтральной реакцией pHc — 5,4-6,4, содержанием гумуса — 4,1-4,2%, низкой обеспеченностью нитратным азотом — 1,5-8,5 мг/кг повышенной и высокой подвижным фосфором — 104-600 мг/кг и очень высокой обменным калием — 140-388 мг/кг.

В опыте с озимой пшеницей высевался сорт Новосибирская 50, а с яровой пшеницей — сорт Новосибирская 29. Предшественником озимой пшеницы был горох, а яровой — повторный посев (пшеница по пшенице). В опыте с озимой пшеницей было 2 варианта: 1) контроль; 2) ОМУ с Санвит-К 0,5 ц/га.

Схема опыта включала варианты: 1) контроль; 2) ОМУ с Санвит-К — 0,5 ц/га; 3) ОМУ с Санвит-К — 1 ц/га; 4) ОМУ с Санвит-К — 1,5 ц/га; 5) ОМУ с Тамир — 0,5 ц/га; 6) ОМУ с Тамир — 1 ц/га. Для сравнения эффективности ОМУ в схему опыта с яровой пшеницей ввели вариант — 0,5 ц/га азофоски.

Площадь опытной делянки по озимой пшенице 1 га повторность 3-кратная, яровой пшенице – 250 м², повторность 4-кратная. Удобрения вноси-

ли в рядок при посеве культур вместе с семенами сеялкой точного высева Horsh Pronto 9, размер гранул ОМУ 6 мм.

По вегетации применяли гербициды в виде баковой смеси из Банвел BP -0.2 л/га + Карате зеон МКС -0.2 л/га.

В фазу конец кущения — начало трубкования отбирали почвенные и растительные образцы, в которых определяли: почва — влажность, рНс, рНв, N-NO₃; N-NH₄; подвижный фосфор и обменный калий; в растениях: содержание азота, фосфора, калия. Все анализы проводились по общепринятым в агрохимслужбе методам.

Учет урожая — сноповым методом в 5-кратной повторности.

Качество зерна определяли по массе 1000 семян, содержанию белка и клейковины, натуры.

Достоверность полученных данных урожайности оценивали по Б.А. Доспехову.

Состав ОМУ представлен в таблице 1.

Полученные удобрения характеризуются близкой к нейтральной реакцией, сравнительно высоким содержанием органического вещества и узким соотношением С:N — как 9,5-9,6. Содержание гуминовых соединений составляет 6,3-10,8%, что будет способствовать повышению устойчивости растений к неблагоприятным условиям, стимулированию роста растений и их развитию. В удобрениях отмечается высокое содержание общего азота, в т.ч. его нитратной и аммонийной формы. В ОМУ с Санвит-К больше подвижных форм фосфора и калия, что характеризует этот вид ОМУ как обладающий лучшими удобрительными свойствами.

Обсуждение результатов

Погодные условия вегетационного периода 2019 г. отличались неравномерным выпадением осадков, их наибольшее количество пришлось на июнь — 130% нормы. В июне больше половины выпавших осадков было в 3-й декаде (40 мм из 74), в июле во 2-й декаде выпало 41 мм осадков из 57. Общее количество осадков составило 85% нормы (163 против 192 мм по норме).

Среднесуточные температуры превысили норму только в августе, в остальные месяцы были ниже на 0,4-0,9°C. Такие температуры были благоприятны для формирования качества зерна.

При внесении ОМУ с Санвит в дозе 0,5 ц/га под озимую пшеницу при посеве реакция почвы сдвинулась с 6,2 до 6,4 в ризосфере и слое 0-20 см до 6,6. В обоих горизонтах больше было в посевном рядке N-NO₃ — 21,25 мг/кг против 8,5 мг/кг на контроле, а в почве в посевном рядке N-NH₄, подвижного фосфора и обменного калия, соответственно: P_2O_5 — 600-1050; 1025-1075 мг/кг и K_2O — 388-859 и 319-261 мг/кг.

Сложившиеся условия питания обеспечили формирование прибавки зерна 0,78 т/га (табл. 2).

Рост урожайности составил 46% при значительном повышении массы 1000 семян, содержания белка 15,6% против 14,8% и клейковины, которая увеличилась с 25,3 до 26,8%.

В опыте с внесением разных доз изучаемых видов ОМУ под яровую пшеницу установлено закономерное их действие на питательный режим почвы и потребление основных элементов питания в критический период для яровой пшеницы как в почве рядка — слой 0-20 см, так и в ризосфере (табл. 3).

Таблица 1

Состав ОМУ

Вид ОМУ	рНс	Орг.	,	Общее	содержа	ание, %	Подвижные формы, мг/кг			
		вещ-во, %	соед., %	N	P ₂ O ₅	K ₂ O	N-NO ₃	N-NH ₄	P ₂ O ₅	K ₂ O
ОМУ с Санвит-К	7,7	73,5	10,8	3,84	1,56	1,87	1191	6550	15986	9314
ОМУ с Тамир	7,7	72,3	6,3	3,81	1,33	1,90	326	9404	9598	8654

Таблица 2

Урожайность и качество зерна озимой пшеницы

Вариант	Урожайность,	ность, Прибавка		Macca 1000	Натура	Содержание, %		
Бариатт	т/га	т/га	%	сем., г	г/л	белка	клейковины	
Контроль	2,17	-	-	41,32	740	14,8	25,2	
ОМУ с Санвит-К – 0,5 ц/га	2,95	0,78	46,0	44,34	740	15,6	26,8	

Таблица 3

Содержание питательных веществ, влаги, рНс и рНв в период кущения – начало выхода в трубку (ризосфера корней)

Рописити	W, %	рН₀	рН₅	Подвижные формы, мг/кг						
Варианты	VV, 70		ρι I _B	NO ₃	NH ₄	NO ₃ +NH ₄	P ₂ O ₅	K ₂ O		
Контроль	19,9	5,4	5,8	1,50	17,5	19,0	104,4	140		
ОМУ Санвит-К – 0,5 ц/га	27,1	5,3	5,7	1,45	12,3	13,75	100,7	149		
ОМУ Санвит-К – 1 ц/га	25,2	5,2	5,8	2,26	13,4	15,66	90,5	137		
ОМУ Санвит-К – 1,5 ц/га	26,4	5,1	5,6	2,43	15,0	17,43	95,2	126		
ОМУ Тамир – 0,5 ц/га	26,0	5,1	5,5	1,35	16,2	17,55	85,7	148,5		
ОМУ Тамир – 1 ц/га	27,7	5,1	5,5	1,01	17,9	18,91	89,7	229		
Азофоска – 0,5 ц/га	25,2	5,1	5,8	4,27	12,1	16,37	103,9	210		

Исходя из полученных данных влажность почвы по вариантам ОМУ была выше контроля и азофоски, реакция почвы как по вариантам с ОМУ, так и с азофоской сдвинулась в кислую среду. Из минеральных форм азота преобладала аммонийная: количественно по отдельным вариантам ОМУ она была близка к контролю, но превосходила вариант с азофоской. Содержание подвижного фосфора по вариантам ОМУ оценивалось как среднее, против повышенного на контроле и азофоске. Уровень обменного калия по всем вариантам был высоким.

В таблице 4 даны результаты свойств почвы в посевном рядке 0-20 см.

В отличие от ризосферы корней соотношение форм азота было иным: N-NO₃ преобладал над N-NH₄ по вариантам ОМУ, в то время как на контроле и азофоске они были одинаковы. Подвижных фосфатов было больше по вариантам с ОМУ, оно было близким и несколько превышало вариант с азофоской. Обменный калий находился в большем количестве также по вариантам ОМУ. Величина рНс и рНв сдвинулась в более кислую

сторону и оценивалась как среднекислая: pHc на контроле 5,3 по вариантам ОМУ она была 4,9-5,1, по азофоске - 5,0 и pHв - соответственно, 5,8; 5,5-5,7 и 5,5, т.е. ОМУ действовали аналогично азофоске.

Разный характер количества подвижных питательных веществ в ризосфере и посевном рядке обусловлен их потреблением растениями. Питательный режим по вариантам ОМУ мало уступал действию азофоски.

К периоду уборки яровой пшеницы в ризосфере корней рНс была менее кислой, чем на контроле, и по вариантам ОМУ с Тамир составила 4,9 против 4,8 по остальным ОМУ и азофоской. Количество нитратов по вариантам ОМУ было выше контроля и варианта с азофоской. Уровень обменного аммония находился на уровне контроля и количественно был ниже нитратов. Содержание фосфатов самое низкое отмечалось по ОМУ с Тамир в дозе 0,5 ц/га. Количество обменного калия намного превосходило контроль и вариант с азофоской.

Таблица 4 Свойства почвы в посевном рядке 0-20 см

Верионти	W. %	рН₀	ьЦ	Подвижные формы, мг/кг						
Варианты	VV, 70		рН₅	NO ₃	NH ₄	NO ₃ + NH ₄	P ₂ O ₅	K ₂ O		
Контроль	28,2	5,3	5,8	9,73	9,73	19,46	116,1	143		
ОМУ Санвит-К – 0,5 ц/га	29,1	5,1	5,7	17,9	9,87	27,77	95,2	187,5		
ОМУ Санвит-К – 1 ц/га	30,9	4,9	5,5	20,8	7,25	28,05	97,2	122		
ОМУ Санвит-К – 1,5 ц/га	31,6	5,0	5,5	20,2	8,76	28,96	105,9	295		
ОМУ Тамир – 0,5 ц/га	24,0	5,0	5,5	15,4	7,92	24,32	110,2	119		
ОМУ Тамир – 1 ц/га	29,2	5,0	5,7	18,6	7,1	25,70	112,8	101,5		
Азофоска – 0,5 ц/га	28,2	5,0	5,5	7,38	6,95	14,43	107,7	107		

В почве рядка в слоях 0-20 и 20-40 см реакция почвы (рНс) была нейтральной только на контроле, в то время по удобренным вариантам ОМУ она варьировала в слое 0-20 см от 4,8-5,3 и в слое 20-40 см от 4,7-5,1 при 4,8 и 4,7 соответственно по азофоске. Меньший сдвиг в кислую сторону характерен для ОМУ с Санвит-К в дозах 0,5 и 1,0 ц/га. Активная кислотность также при внесении удобрений изменилась в кислую сторону: с 6,3 и 5,8 (слой 0-20 и 20-40) на контроле до 5,6-6,2 и 5,5-6,2 соответственно, при изменении по варианту с азофоской 5,7-5,6.

Обеспеченность нитратным азотом в отличие от ризосферы была более низкой, но не уступала азофоске; количество обменного аммония по всем вариантам ОМУ превышало контроль и вариант с азофоской.

Обеспеченность подвижным фосфором и обменным калием, особенно в слое 0-20 см, при внесении удобрений была выше контроля.

Обсуждая обеспеченность растений элементами питания в целом по опыту, можно заключить, что применение ОМУ не уступает, а в большинстве случаев превосходит азофоску.

Определение численности микроорганизмов, выросших на средах МПА, КАА, Чапека в почве ризосферы яровой пшеницы, в уборку показало влияние ОМУ на биогенность почвы (табл. 5).

Так, общая биогенность (количество бактерий на средах МПА и КАА) увеличилась в 1,07-1,93 раза по сравнению с контролем и в 1,78 раза по варианту азофоски. Наибольшее увеличение произошло по более высоким дозам ОМУ в 1,92-1,93 раза. Количество актиномицетов по вариан-

там внесения высоких доз ОМУ повышалось в 1,72-2,17 раза при увеличении по азофоске в 1,48 раза. При этом количество грибов (среда Чапека) снизилось по вариантам ОМУ в 1,07-1,38 раза при снижении по азофоске в 1,18 раза.

Отмеченные изменения в составе микроорганизмов свидетельствуют о снижении грибковой микрофлоры, насыщении почвы бактериями и улучшении биологической активности под влиянием ОМУ.

Согласно коэффициентам минерализации наряду с мобилизацией азота почвы проходят процессы накопления органического вещества в почве.

Уровень потребления основных элементов питания в критический период питания яровой пшеницы показал, что при оптимальном значении в эту фазу по азоту 3,5-4,2% он варьировал в пределах 1,92-3,88% при 2,86% на контроле и 2,44% на азофоске. Уровень фосфора при оптимуме 0,3-0,45% составлял 0,20-0,3% и был близок к вариантам ОМУ в дозах 1 и 1,59 и азофоске. По калию при оптимуме 3,5-4,4 он превосходил его особенно на контроле и азофоске.

Учет урожайности показал, что по всем вариантам сформировался более высокий урожай (табл. 6).

Внесение ОМУ с Санвит-К повысило урожайность на 0,11-0,32 т/га при наибольшей прибавке по дозе 1,5 ц/га — 0,32 т/га, или 26,2%, и с Тамиром на 0,22-0,29 т/га при 0,29 т/га по дозе 1 ц/га. По азофоске прирост составил 0,24 т/га, или 19,7%.

Таблица 5

Вариант		пичество ий, млн КОЕ КАА	Общая биоген- ность, млн КОЕ	Актиномицеты, млн КОЕ	Грибы на ср. Чапека, тыс. КОЕ	КАА/МПА
Контроль	30,76	50,62	81,38	3,89	45,95	1,72
ОМУ Санвит-К – 0,5 ц/га	33,76	77,87	111,63	1,92	37,21	2,36
ОМУ Санвит-К – 1,0 ц/га	25,17	76,07	111,24	0,76	49,96	2,18
ОМУ Санвит-К – 1,5 ц/га	71,97	86,05	156,02	8,44	36,19	1,31
ОМУ Тамир – 0,5 ц/га	32,55	54,99	87,54	5,04	33,30	1,85
ОМУ Тамир – 1,0 ц/га	78,68	78,68	157,36	6,68	43,02	1,08
Азофоска – 0,5 ц/га	72,06	73,22	145,28	5,78	38,92	1,1

Численность микроорганизмов

Урожайность и качество зерна яровой пшеницы

		Прибавка		L	%		Содержание кл	ейковины,
	т/га			ЭН, І		٦/٦	%	
Варианты	Урожайность, 1	т/га	%	Масса 1000 зерен,	Содержание белка,	Натура зерна,	количество, %	качество, едИДК
Контроль	1,22	-	-	31,19	14,2	740	21,2	85
ОМУ Санвит-К – 0,5 ц/га	1,33	0,11	9,0	24,16	15,6	745	30,0	95
ОМУ Санвит-К – 1 ц/га	1,43	0,21	17,2	24,80	14,5	745	28,8	95
ОМУ Санвит-К – 1,5 ц/га	1,54	0,32	26,2	27,38	16,6	745	28,8	95
ОМУ Тамир – 0,5 ц/га	1,44	0,22	18,0	28,46	14,9	750	24,0	90
ОМУ Тамир – 1 ц/га	1,51	0,29	23,8	28,04	17,6	750	26,0	90
Азофоска – 0,5 ц/га	1,46	0,24	19,7	32,80	17,3	730	27,2	95
HCP ₀₅ , т/га	0,74							

Под влиянием удобрений с учетом разной урожайности уменьшилась масса 1000 семян. Сравнительно выше она была на варианте с азофоской и на контроле — 32,8 и 31,19 г. Несколько ниже 28,04-28,46 г по вариантам ОМУ с Тамиром и самой низкой 24,16-24,80 г — по ОМУ с Санвитом в дозе 0,5 и 1 ц/га, что обусловлено более высокой густотой растений по этим вариантам.

Натура зерна увеличилась по вариантам ОМУ до 745-750 г/л при 740 г/л — на контроле и 730 г/л — по варианту с азофоской. Содержание белка возросло с 14,2% на контроле до 14,5-17,6% по вариантам ОМУ и 17,3% — по азофоске. Наибольшее увеличение получено по более высоким дозам ОМУ. Существенно увеличилось в зерне количество клейковины: с 21,2% на контроле до 24-30% по вариантам ОМУ и 27,2% — по азофоске.

Выводы

- 1. Применение ОМУ П с использованием биопрепаратов «Санвит-К» и «Тамир» обеспечивает рост урожайности зерна яровой пшеницы на 9-26,2% с содержанием белка 14,5-17,6% и клейковины 24-30% против 19,7; 17,3 и 27,2% соответственно при внесении азофоски.
- 2. Повышается количество бактерий и актиномицетов, увеличивая биогенность почвы в ризосфере корней.
- 3. Припосевное внесение ОМУ с Санвит-К под озимую пшеницу обеспечивает существенный рост урожайности (на 46%) и получение зерна высокого качества: содержание белка увеличива-

ется с 14,8 до 15,6%, а клейковины – до 26,8% против 25,2% на контроле.

Библиографический список

- 1. Афанасьев, А. В. Анализ технологии переработки навоза и помета / А. В. Афанасьев, Б. М. Месхи, А. В. Павлов. Текст: непосредственный // Вестник ВНИИМЖ. 2012. Т. 8, № 4. С. 28-35.
- 2. Гриценко, В. Л. Эффективность применения препарата Байкал ЭМ 1 при утилизации свежего помета / В. Л. Гриценко. Текст: непосредственный // Аграрный вестник Урала. 2008. Т. 39, № 3. С. 61-63.
- 3. Гарзанов, А. Б. Подстилочный помет птицефабрик возобновляемое биотопливо / А. Б. Гарзанов, А. Н. Аванов, Ю. С. Яковлев. Текст: непосредственный // Птицеводство. 2010. № 8. С. 47-49.
- 4. Максимов, Д. А. Повышение эффективности технологии переработки отходов животноводства / Д. А. Максимов, П. Т. Киселев, А. В. Павлов. Текст: непосредственный // Сборник научных трудов СЗНИИМЭСХ. 2002. № 23. С. 267-273.
- 5. Неверова, О. В. Экосистемный подход к утилизации помета / О. В. Неверова, Г. В. Зуева, Т. В. Саракулов. Текст: непосредственный // Аграрный вестник Урала. 2014. Т. 126, № 8. С. 38-41.
- 6. Тарханов, О. В. Реально ли производство без отходов / О. В. Тарханов, А. Н. Аванов, Ю. С. Яковлев. Текст: непосредственный // Птицеводство. 2008. N = 7. C.41.

- 7. Хазан, М. Л. Экологическая необходимость и экологическая целесообразность переработки куриного помета / М. Л. Хазан, Б. М. Месхи, А. В. Павлов. Текст: непосредственный // Известия вузов. Сев. Кавказского региона естественных наук. 2005. № 9. С. 76-78.
- 8. Шаблин, П. А. Вопросы практики применения микробиологических препаратов Байкал ЭМ 1, Тамир ЭМ / П. А. Шаблин, А. Н. Аванов, Ю. С. Яковлев. Текст: непосредственный // Сборник научных трудов и достижений ЭМ технологии. 2006. 201 с.
- 9. Щетитнин, Б. Н. Корпорация как один из факторов решения экологических проблем в птицеводстве / Б. Н. Щетитнин, Г. В. Зуева, Т. В. Саракулов. Текст: непосредственный // Успехи естественного естествознания. 2010. № 3. С. 161-163.

References

- 1. Afanasev, A.V. Analiz tekhnologii pererabotki navoza i pometa / A.V. Afanasev, B.M. Meskhi, A.V. Pavlov // Vestnik VNIIMZh. 2012. T. 8, No. 4. S. 28-35.
- 2. Gritsenko, V.L. Effektivnost primeneniya preparata Baykal EM 1 pri utilizatsii svezhego pometa / V.L. Gritsenko // Agrarnyy vestnik Urala. 2008. T. 39, No. 3. S. 61-63.
- 3. Garzanov, A.B. Podstilochnyy pomet ptitsefabrik vozobnovlyaemoe biotoplivo / A.B. Garzanov,

- A.N. Avanov, Yu.S.. Yakovlev // Ptitsevodstvo. 2010. No. 8. S. 47-49
- 4. Maksimov, D.A. Povyshenie effektivnosti tekhnologii pererabotki otkhodov zhivotnovodstva / D.A. Maksimov, P.T. Kiselev, A.V. Pavlov // Sbornik nauchnykh trudov SZNIIMESKh. 2002. No. 23. S. 267-273.
- 5. Neverova, O.V. Ekosistemnyy podkhod k utilizatsii pometa / O.V. Neverova, G.V. Zueva, T.V. Sarakulov // Agrarnyy vestnik Urala. 2014. T. 126, No. 8. S. 38-41.
- 6. Tarkhanov, O.V. Realno li proizvodstvo bez otkhodov / O.V. Tarkhanov, A.N. Avanov, Yu.S. Yakovlev // Ptitsevodstvo. – 2008. – No. 7. – S. 41
- 7. Khazan, M.L. Ekologicheskaya neobkhodimost i ekologicheskaya tselesoobraznost pererabotki kurinogo pometa / M.L. Khazan, B.M. Meskhi, A.V. Pavlov // Izvestiya vuzov. Sev. Kavkazskogo regiona estestvennykh nauk. 2005. No. 9. S. 76-78.
- 8. Shablin, P.A. Voprosy praktiki primeneniya mikrobiologicheskikh preparatov Baykal EM 1, Tamir EM / P.A. Shablin, A.N. Avanov, Yu.S. Yakovlev // Sbornik nauchnykh trudov i dostizheniy EM tekhnologii. 2006. 201 s.
- 9. Shchetitnin, B.N. Korporatsiya kak odin iz faktorov resheniya ekologicheskikh problem v ptitsevodstve / B.N. Shchetitnin, G.V. Zueva, T.V. Sarakulov // Uspekhi estestvennogo estestvoznaniya. 2010. No. 3. S. 161-163.

УДК 631.861:631.895:631.812.12

E.M. Комякова, О.И. Антонова, В.В. Калпокас Ye.M. Komyakova, O.I. Antonova, V.V. Kalpokas

ЭФФЕКТИВНОСТЬ ОРГАНОМИНЕРАЛЬНЫХ УДОБРЕНИЙ (ОМУ) ИЗ КУРИНЫХ БИОКОМПОСТОВ ПРИ ВОЗДЕЛЫВАНИИ КУКУРУЗЫ

THE EFFECTIVENESS OF ORGANO-MINERAL FERTILIZERS (OMF) BASED ON CHICKEN MANURE BIOCOMPOSTS IN MAIZE CULTIVATION

Ключевые слова: помет кур, биопрепараты, биокомпосты, органоминеральные удобрения (ОМУ), урожайность, показатели качества.

Представлена характеристика удобрительных свойств нового органоминерального удобрения (ОМУ), полученного из биокомпостов с использованием биопрепаратов: Санвит-К, Тамир, Биостимул, GSN-2002. В условиях полевого опыта с кукурузой изучено действие разных видов и доз ОМУ, внесенных в один рядок с се-

менами на массу и долю початков в общей биомассе, показатели качества, массу зерна и урожайность. Внесение их в дозе 2 ц/га обеспечивает прирост зеленой массы на 15,4-31,9% в дозе 3 ц/га — 35,3-48,6%, при 4 ц/га — 44,0-46,5%. Доля початков увеличивается с 6,0-25,5 до 15,6-27,3%. Содержание протеина увеличилось с 9,2-10,3 до 9,6-11,4% (норма не <9%), т.е. в 1 кг корма — с 0,97-1,02 до 0,97-1,05 (норма не <1), обменная энергия — с 10,9-11,2 до 10,9-11,4 мДж (норма не <10). Установлено, что припосевное внесение полученных ОМУ в дозе 4 ц/га