

УДК 631.82:635.64 DOI: 10.53083/1996-4277-2021-205-11-31-40

А.В. Пастухова, А.Ф. Петров, Н.В. Гаврилец A.V. Pastukhova, A.F. Petrov, N.V. Gavrilets

ВЛИЯНИЕ ФОРМ И ДОЗ ВНОСИМЫХ УДОБРЕНИЙ НА ПОКАЗАТЕЛИ КАЧЕСТВА ПЛОДОВ ТОМАТА

INFLUENCE OF FERTILIZER FORMS AND RATES ON TOMATO FRUIT QUALITY INDICES

Ключевые слова: томат, семейство паслёновые, сорт, урожайность, средняя масса плода, удобрения, минеральные удобрения, методика исследования, химический состав плода, антиоксидант, ликопин.

Представлены результаты, полученные при проведении научно-исследовательской работы по изучению влияния азотных удобрений карбамидно-аммиачной смеси (КАС-32) и аммиачной селитры и их различных доз (40, 80 и 120 кг д.в/га) на качество плодов различных сортов томата, выращиваемого в открытом и защищённом грунтах. В процессе исследования проводились анализы по выявлению биологически активных веществ плодов томата, а также рассмотрен химический состава плодов опытных образцов с определением сухого вещества, общего сахара, витамина С, общей кислотности, ликопина и нитратов. Было определено, что при применении азотсодержащих удобрений в закрытом грунте по отношению к контролю наблюдается увеличение содержания сухого вещества в среднем на 23-25%, общего сахара - на 55-61%, витамина С – на 33-41%. В открытом грунте содержание сухого вещества увеличивалось на 35-45%, общего сахара – на 74-83% и витамина С – 37-42%, но на максимальных дозах применения удобрений N₁₂₀ отмечалось снижение сухого вещества 5-6 по отношению к N_{80} . В то же время наблюдали увеличение общей кислотности плодов по отношению к контролю до 32% в закрытом грунте и до 16% в открытом грунте, хотя на фоне роста общего сахара на вкусовые качества кислотность почти не оказала влияние. Содержание нитратов во всех вариантах не превышало предельно допустимую концентрацию. Полученные данные подтвердили положительное влияние доз разных азотсодержащих удобрений на структуру, качество и безопасность получаемой продукции томата. Такой результат позволит рекомендовать проверенные методы и нормы внесения удобрений в период вегетации растений.

Keywords: tomato, Solanaceae, variety, yield, average fruit weight, fertilizers, mineral fertilizers, research method, fruit chemical composition, antioxidant, lycopene.

This paper discusses the results findings on the effect of nitrogen fertilizers as urea-ammonia liquor (KAS-32) and ammonium nitrate of various application rates (40, 80 and 120 kg of primary nutrient per ha) on the quality of tomato fruits grown on the field and under cover. Various research methods were tested. They made it possible to identify biologically active substances of tomato fruits which helped to examine fruit chemical composition of experimental varieties with the determination of dry solids, total sugar, vitamin C, total acidity, lycopene and nitrates. It was found that under cover, the application of nitrogen-containing fertilizers increased dry solids by an average of 23-25%, total sugar - by 55-61%, vitamin C - by 33-41% as compared to the control. On the field, the dry solids content increased by 35-45%, total sugar - by 74-83% and vitamin C - by 37-42%. However, the application of the maximum rates of N_{120} fertilizer decreased dry solids content by 5-6% as compared to N₈₀. At the same time, there was an increase of fruit total acidity as compared to the control: up to 32% under cover, and up to 16% on the field. Although as sugar content increased, the acidity had almost no effect on the eating qualities. In all variants, the nitrate content did not exceed the maximum permissible concentration. The obtained data confirmed the positive effect of certain rates of nitrogen-containing fertilizers on the structure, quality and safety of the obtained tomatoes. This result will make it possible to recommend the tested methods and rates of fertilization during the growing season.

Пастухова Анна Владимировна, аспирант, Новосибирский государственный аграрный университет, г. Новосибирск, Российская Федерация, e-mail: ngau.histori@mail.ru. ORCID: https://orcid.org/0000-0002-5383-5015.

Петров Андрей Федорович, к.с.-х.н., доцент, Новосибирский государственный аграрный университет, г. Новосибирск, Российская Федерация, e-mail: petrov190378@mail.ru. ORCID: https://orcid.org/0000-0002-4521-9087.

Гаврилец Наталья Владимировна, начальник информационно-аналитического и патентного отдела, Новосибирский государственный аграрный университет, г. Новосибирск, Российская Федерация, e-mail: gawrilez55@yandex.ru. ORCID: https://orcid.org/0000-0002-4140-2407.

Pastukhova Anna Vladimirovna, post-graduate student, Novosibirsk State Agricultural University, Novosibirsk, Russian Federation, e-mail: ngau.histori@mail.ru. ORCID: https://orcid.org/0000-0002-5383-5015

Petrov Andrey Fedorovich, Cand. Agr. Sci., Assoc. Prof., Novosibirsk State Agricultural University, Novosibirsk, Russian Federation, e-mail: petrov190378@mail.ru. ORCID: https://orcid.org/0000-0002-4521-9087.

Gavrilets Natalya Vladimirovna, Head of Information-Analytical and Patent Dept., Novosibirsk State Agricultural University, Novosibirsk, Russian Federation, e-mail: gawrilez55@yandex.ru. ORCID: https://orcid.org/0000-0002-4140-2407.

Введение

Томат является одним из наиболее распространённых выращиваемых культур у населения Сибири. Отчасти это связано с его органолептическими свойствами, пластичностью использования и переработки, но также богатым химическим составом, представляющим кладезь полезных веществ.

Ценность плодов томата определяется содержанием в них большого количества весьма важных и доступных для ежедневного рациона человека веществ, таких как сахара, витамины, органические кислоты, аминокислоты, белки, ферменты, минеральные соли, клетчатка, пектины, жиры, антиоксиданты, фитонциды и многих других [1].

Плоды томата отличаются низкой калорийностью (35 калорий на 100 г), что определяет как наиболее употребляемый в свежем виде овощ в мировой кулинарии. На рисунке 1 представлено

содержание полезных веществ в плодах томата [2]. Согласно проведённым исследованиям «один среднего размера плод томата содержит 57% рекомендуемой суточной нормы витамина С, 25% витамина А и 8% железа» [3].

Современные селекционные достижения обеспечивают поставки на рынок не только классических плодов томата красного, розового и оранжевого цветов, но и необычной формы и колерованной окраски, а высокопродуктивные районированные сортовые линейки позволяют гарантированно получать товарные, экологически безопасные с высокими качественными показателями плоды. Поэтому очень важно разработать исходную технологию возделывания (выращивания) томата, позволяющую не только получение продукции, но и с применением органических и минеральных удобрений рассчитать значимую, безопасную для здоровья потребителя, прибавку урожая.

Содержание полезных веществ в плодах томатов.

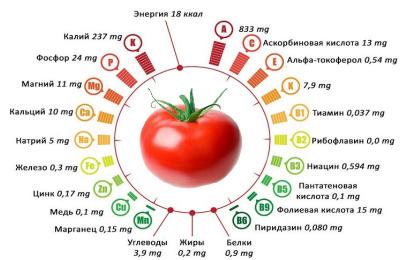


Рис. 1. Содержание полезных веществ в плодах томатов

Сотрудниками Новосибирского ГАУ ежегодно проводятся исследования по изучению влияния вносимых доз азотных удобрений на качество получаемых плодов томата в открытом и закрытом грунтах.

Целью работы является определение отзывчивости томата на применение различных доз азотных удобрений с последующим химическим анализом полученной продукции.

Объекты и методика проведения исследования

Исследования проводили в 2018-2020 гг. в северной лесостепи Западной Сибири на территории Учебно-производственного хозяйства «Сад Мичуринцев» Новосибирского ГАУ, расположенного на территории Новосибирской области в зоне резко континентального климата.

Безморозный период на данной территории длится от 90 до 130 дней. Сумма активных температур воздуха за вегетационный период в среднем составляет 1800-2000°C.

Количество выпавших осадков варьируется от 300 до 400 мм в год, более 2/3 осадков выпадает в теплый период года.

Данные показатели являются не маловажными, поскольку позволяют получить от 50 до 70% планируемого урожая в виде созревших плодов томата при выращивании в открытом грунте [4].

Почва опытного участка — чернозём выщелоченный, тяжелосуглинистый, содержание гумуса в пахотном горизонте (5,6%) относится к среднеобеспеченному. Содержание нитратного азота весной перед высадкой в грунт рассадного материала в слое 0-20 см низкое — 6 мг/кг; в слое 20-40 см — 7,7 мг/кг. Чернозём выщелоченный относится к хорошо обеспеченным подвижными формами фосфора — 181 мг/кг (по Чирикову Ю.И., 1969), обменного калия содержится выше среднего — 205 мг/кг почвы. Сумма поглощённых оснований — 31,8-61,0 мг/экв. на 100 г почвы, рН солевая близка к нейтральной [5].

В связи с низким содержанием азота в почве для изучения были выбраны азотосодержащие удобрения – аммиачная селитра и карбамидно-аммиачная смесь (КАС) в различных концентрациях производства «СДС Азот» [6]. Ранее КАС применялся на зерновых, рапсе, сахарной свекле, кукурузе и многолетних травах [7], изучение влияния КАС на томаты не проводилось. На основании чего была сформирована цель, для до-

стижения которой заложены следующие опыты в защищённом грунте и в открытом грунте с ранжированием по вариантам:

- 1) контроль;
- 2) NH₄NO₃ 40;
- 3) NH₄NO₃ 80;
- 4) NH₄NO₃ 120;
- 5) KAC-32 40;
- 6) KAC-32 80;
- 7) KAC-32 120.

В качестве объектов исследования в защищённом грунте взяты 2 сорта томата индетерминантного типа — Девчата (включённый в Госреестр с 2019 г.), Дельта 264 (включённый в Госреестр с 1999 г.), 2 сорта детерминантного типа — Флажок (включённый в Госреестр в 2010 г.) и Зырянка (включённый в Госреестр в 2004 г.), в открытом грунте — 3 сорта томата детерминантного типа — Боец (включённый в Госреестр в 2000 г.), Канопус (включённый в Госреестр в 2000 г.), Рая (включённый в Госреестр в 2019 г.) [8]. На момент начала опыта сорта, включённые в Госреестр в 2019 г., участвовали как сортообразцы.

Повторность в опыте четырёхкратная, размещение делянок систематическое. Общая площадь делянки 5 M^2 [9].

Результаты исследований

Посев был произведён 30 марта в специальные ёмкости, в дальнейшем пикировка не производилась. Внесение минеральных удобрений производилось двукратно, в момент высадки посадочного материала на постоянное место было внесено 80% от запланированной нормы и остаток – в период массового цветения.

В процессе ухода за растениями проводилось формирование куста, рыхление по мере образования почвенной корки, удаление сорной растительности, полив.

Сбор плодов проводился в 3 приема, при которых определяли структуру урожая (табл. 1, 3). Для химических анализов отбор плодов проводился фазе биологической спелости случайным образом при каждом сборе.

Анализ качества товарной продукции и в частности содержание сахаров, общей кислотности, витамина С и сухого вещества в плодах томата защищённого грунта показал, что применение азотных удобрений оказывает влияние на их накопление (табл. 2, рис. 2). Так, по всем сортам и вариантам по отношению к контролю

наблюдается положительная тенденция роста сухого вещества в среднем на 23% по аммиачной селитре и на 25% по КАС-32, общего сахара – на 55% по аммиачной селитре и 61% по КАС-32 и 33 и 41% соответственно витамина С. При этом следует заметить, что существенной разницы между обработанными вариантами не наблюдается, изменения находятся в пределах 3-7%, причём увеличение нормы внесения

удобрений с N_{80} до N_{120} вызывает снижение сухого вещества до 6% по обоим фонам. Применение азотных удобрений вызывает увеличение общей кислотности плодов до 32% по аммиачной селитре и 25% по КАС-32, что не всегда является положительным фактором, так как от соотношения общего сахара и кислотности зависит вкус плодов.

Таблица 1 Эффективность применения азотных удобрений на сортах томатов защищённого грунта (2018-2020 гг.)

Сорт Он Рад, Кар средняя масса плода, г. количество плодов на 1 растении, шт. средняя контролю прибавка контролю Флажок NH4NO3 – 40 79,17 14 65,6 37,3 МН4NO3 – 80 95,37 16 93,7 65,5 NH4NO3 – 120 104,10 17 104,3 76,1 КАС – 80 188,80 18 95,0 66,8 КАС – 80 103,57 18 110,6 82,3 КАС – 120 107,17 19 112,5 84,3 КАС – 120 107,17 19 112,5 84,3 МН4NO3 – 40 87,73 16 87,3 48,8 NH4NO3 – 80 113,60 17 113,8 75,3 NHANO3 – 120 117,17 17 120,1 11,6 КАС – 40 93,77 18 101,7 63,2 КАС – 120 122,50 20 146,1 107,6 КАС – 10 122,50 20 146,1 107,6 КИР		Вариант	Стр	уктура урожая	Урожайность, т/га	
Флажок Контроль 38,33 12 28,2 - МНАNО3 – 40 79,17 14 65,6 37,3 NHANO3 – 80 95,37 16 93,7 65,5 NHANO3 – 120 104,10 17 104,3 76,1 КАС – 40 88,80 18 95,0 66,8 КАС – 80 103,57 18 110,6 82,3 КАС – 120 107,17 19 112,5 84,3 КАС – 120 107,17 19 112,5 84,3 NH4NO3 – 40 87,73 16 87,3 48,8 NH4NO3 – 10 117,7 17 120,1 81,6 КАС – 40 93,77 18 101,7 63,2 КАС – 80 121,77 19 135,9 97,4 КАС – 120 122,50 20 146,1 107,6 МН4NO3 – 80 159,60 12 115,2 76,5 Зырянка NH4NO3 – 10 109,33 10 68,4	Сорт		• • •		средняя	•
Флажок NH ₄ NO ₃ – 80 95,37 16 93,7 65,5 NH ₄ NO ₃ – 120 104,10 17 104,3 76,1 KAC – 40 88,80 18 95,0 66,8 KAC – 80 103,57 18 110,6 82,3 KAC – 120 107,17 19 112,5 84,3 KOHTDOND 44,93 14 38,5 - NH ₄ NO ₃ – 40 87,73 16 87,3 48,8 NH ₄ NO ₃ – 80 113,60 17 113,8 75,3 MH ₄ NO ₃ – 80 117,17 17 120,1 81,6 KAC – 80 121,77 19 135,9 97,4 KAC – 80 121,77 19 135,9 97,4 KAC – 120 122,50 20 146,1 107,6 КАС – 80 159,60 12 115,2 76,5 Зырянка NH ₄ NO ₃ – 40 109,33 10 68,4 29,7 NH ₄ NO ₃ – 120 162,30 12 <td rowspan="2"></td> <td>Контроль</td> <td></td> <td></td> <td>28,2</td> <td>-</td>		Контроль			28,2	-
Флажок NH ₄ NO ₃ - 120 104,10 17 104,3 76,1 КАС - 40 88,80 18 95,0 66,8 КАС - 80 103,57 18 110,6 82,3 КАС - 120 107,17 19 112,5 84,3 Контроль 44,93 14 38,5 - NH ₄ NO ₃ - 40 87,73 16 87,3 48,8 NH ₄ NO ₃ - 80 113,60 17 113,8 75,3 NH ₄ NO ₃ - 120 117,17 17 120,1 81,6 KAC - 40 93,77 18 101,7 63,2 KAC - 80 121,77 19 135,9 97,4 KAC - 120 122,50 20 146,1 107,6 Контроль 77,77 8 38,7 - NH ₄ NO ₃ - 40 109,33 10 68,4 29,7 NH ₄ NO ₃ - 120 162,30 12 115,2 76,5 S Не С - 80 164,87 13 128,3		NH ₄ NO ₃ – 40	79,17	14	65,6	37,3
КАС – 40 88,80 18 95,0 66,8 КАС – 80 103,57 18 110,6 82,3 КАС – 120 107,17 19 112,5 84,3 КОНТРОЛЬ 44,93 14 38,5 - NH4NO3 – 40 87,73 16 87,3 48,8 NH4NO3 – 80 113,60 17 113,8 75,3 NH4NO3 – 120 117,17 17 120,1 81,6 KAC – 40 93,77 18 101,7 63,2 KAC – 80 121,77 19 135,9 97,4 KAC – 120 122,50 20 146,1 107,6 КАС – 120 122,50 20 146,1 107,6 МН4NO3 – 40 109,33 10 68,4 29,7 NH4NO3 – 80 159,60 12 115,2 76,5 NH4NO3 – 120 162,30 12 114,1 72,4 КАС – 80 164,87 13 128,3 89,6 <t< td=""><td></td><td>$NH_4NO_3 - 80$</td><td>95,37</td><td>16</td><td>93,7</td><td>65,5</td></t<>		$NH_4NO_3 - 80$	95,37	16	93,7	65,5
КАС – 80 103,57 18 110,6 82,3 КАС – 120 107,17 19 112,5 84,3 Контроль 44,93 14 38,5 - NH,NO ₃ – 40 87,73 16 87,3 48,8 NH,NO ₃ – 80 113,60 17 113,8 75,3 NH,NO ₃ – 120 117,17 17 120,1 81,6 КАС – 40 93,77 18 101,7 63,2 КАС – 80 121,77 19 135,9 97,4 КАС – 120 122,50 20 146,1 107,6 КАС – 120 109,33 10 68,4 29,7 NH,NO ₃ – 40 109,33 10 68,4 29,7 NH,NO ₃ – 80 159,60 12 115,2 76,5 NH,NO ₃ – 120 162,30 12 114,1 72,4 КАС – 40 108,70 11 85,8 47,1 КАС – 120 166,50 13 130,1 91,4 <tr< td=""><td>Флажок</td><td>NH₄NO₃ – 120</td><td>104,10</td><td>17</td><td>104,3</td><td>76,1</td></tr<>	Флажок	NH ₄ NO ₃ – 120	104,10	17	104,3	76,1
КАС - 120 107,17 19 112,5 84,3 Контроль 44,93 14 38,5 - NH4NO3 - 40 87,73 16 87,3 48,8 NH4NO3 - 80 113,60 17 113,8 75,3 NH4NO3 - 120 117,17 17 120,1 81,6 KAC - 40 93,77 18 101,7 63,2 KAC - 80 121,77 19 135,9 97,4 KAC - 120 122,50 20 146,1 107,6 KAC - 120 122,50 20 146,1 107,6 KAC - 120 109,33 10 68,4 29,7 NH4NO3 - 40 109,33 10 68,4 29,7 NH4NO3 - 80 159,60 12 115,2 76,5 SHAPHKA KAC - 40 108,70 11 85,8 47,1 KAC - 80 164,87 13 128,3 89,6 KAC - 120 166,50 13 130,1 91,4 </td <td></td> <td>KAC – 40</td> <td>88,80</td> <td>18</td> <td>95,0</td> <td>66,8</td>		KAC – 40	88,80	18	95,0	66,8
Девчата Контроль 44,93 14 38,5 - NH4NO3 – 40 87,73 16 87,3 48,8 NH4NO3 – 80 113,60 17 113,8 75,3 NH4NO3 – 120 117,17 17 120,1 81,6 KAC – 40 93,77 18 101,7 63,2 KAC – 80 121,77 19 135,9 97,4 KAC – 120 122,50 20 146,1 107,6 KAC – 120 122,50 20 146,1 107,6 NH4NO3 – 40 109,33 10 68,4 29,7 NH4NO3 – 80 159,60 12 115,2 76,5 NH4NO3 – 120 162,30 12 114,1 72,4 KAC – 40 108,70 11 85,8 47,1 КАС – 80 164,87 13 128,3 89,6 КАС – 120 166,50 13 130,1 91,4 КАС – 120 166,50 13 130,1 91,4		KAC – 80	103,57	18	110,6	82,3
Девчата NH _A NO ₃ – 40 87,73 16 87,3 48,8 NH _A NO ₃ – 80 113,60 17 113,8 75,3 NH ₄ NO ₃ – 120 117,17 17 120,1 81,6 KAC – 40 93,77 18 101,7 63,2 KAC – 80 121,77 19 135,9 97,4 KAC – 120 122,50 20 146,1 107,6 KAC – 120 122,50 20 146,1 107,6 NH ₄ NO ₃ – 40 109,33 10 68,4 29,7 NH ₄ NO ₃ – 40 109,33 10 68,4 29,7 NH ₄ NO ₃ – 120 162,30 12 115,2 76,5 SUBPRIKA NH ₄ NO ₃ – 120 162,30 12 114,1 72,4 KAC – 40 108,70 11 85,8 47,1 KAC – 80 164,87 13 128,3 89,6 KAC – 120 166,50 13 130,1 91,4 М-1, NO ₃ – 80 164,70		KAC – 120	107,17	19	112,5	84,3
Девчата NH ₄ NO ₃ – 80 113,60 17 113,8 75,3 NH ₄ NO ₃ – 120 117,17 17 120,1 81,6 KAC – 40 93,77 18 101,7 63,2 KAC – 80 121,77 19 135,9 97,4 KAC – 120 122,50 20 146,1 107,6 KAC – 120 122,50 20 146,1 107,6 NH ₄ NO ₃ – 40 109,33 10 68,4 29,7 NH ₄ NO ₃ – 40 109,33 10 68,4 29,7 NH ₄ NO ₃ – 80 159,60 12 115,2 76,5 NH ₄ NO ₃ – 120 162,30 12 114,1 72,4 KAC – 40 108,70 11 85,8 47,1 KAC – 80 164,87 13 128,3 89,6 KAC – 120 166,50 13 130,1 91,4 Дельта Kohtponb 76,73 8 37,6 - NH ₄ NO ₃ – 120 152,60		Контроль	44,93	14	38,5	-
Девчата NH4NO3 – 120 117,17 17 120,1 81,6 КАС – 40 93,77 18 101,7 63,2 КАС – 80 121,77 19 135,9 97,4 КАС – 120 122,50 20 146,1 107,6 Контроль 77,77 8 38,7 - NH4NO3 – 40 109,33 10 68,4 29,7 NH4NO3 – 80 159,60 12 115,2 76,5 NH4NO3 – 120 162,30 12 114,1 72,4 КАС – 40 108,70 11 85,8 47,1 КАС – 80 164,87 13 128,3 89,6 КАС – 120 166,50 13 130,1 91,4 Контроль 76,73 8 37,6 - NH4NO3 – 40 152,60 10 92,1 54,5 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 <td></td> <td>NH₄NO₃ – 40</td> <td>87,73</td> <td>16</td> <td>87,3</td> <td>48,8</td>		NH ₄ NO ₃ – 40	87,73	16	87,3	48,8
КАС – 40 93,77 18 101,7 63,2 КАС – 80 121,77 19 135,9 97,4 КАС – 120 122,50 20 146,1 107,6 КОНТРОЛЬ 77,77 8 38,7 - NH4NO3 – 40 109,33 10 68,4 29,7 NH4NO3 – 80 159,60 12 115,2 76,5 NH4NO3 – 120 162,30 12 114,1 72,4 KAC – 40 108,70 11 85,8 47,1 KAC – 80 164,87 13 128,3 89,6 KAC – 120 166,50 13 130,1 91,4 Контроль 76,73 8 37,6 - NH4NO3 – 40 152,60 10 92,1 54,5 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC –		$NH_4NO_3 - 80$	113,60	17	113,8	75,3
КАС – 80 121,77 19 135,9 97,4 КАС – 120 122,50 20 146,1 107,6 КОНТРОЛЬ 77,77 8 38,7 - NH4NO3 – 40 109,33 10 68,4 29,7 NH4NO3 – 80 159,60 12 115,2 76,5 NH4NO3 – 120 162,30 12 114,1 72,4 KAC – 40 108,70 11 85,8 47,1 KAC – 80 164,87 13 128,3 89,6 KAC – 120 166,50 13 130,1 91,4 Контроль 76,73 8 37,6 - NH4NO3 – 40 152,60 10 92,1 54,5 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP _{0.5} 8 (удобрение	Девчата	NH ₄ NO ₃ – 120	117,17	17	120,1	81,6
КАС – 120 122,50 20 146,1 107,6 Контроль 77,77 8 38,7 - NH4NO3 – 40 109,33 10 68,4 29,7 NH4NO3 – 80 159,60 12 115,2 76,5 NH4NO3 – 120 162,30 12 114,1 72,4 KAC – 40 108,70 11 85,8 47,1 KAC – 80 164,87 13 128,3 89,6 KAC – 120 166,50 13 130,1 91,4 Контроль 76,73 8 37,6 - NH4NO3 – 40 152,60 10 92,1 54,5 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP		KAC – 40	93,77	18	101,7	63,2
Контроль 77,77 8 38,7 - NH4NO3 – 40 109,33 10 68,4 29,7 NH4NO3 – 80 159,60 12 115,2 76,5 NH4NO3 – 120 162,30 12 114,1 72,4 KAC – 40 108,70 11 85,8 47,1 KAC – 80 164,87 13 128,3 89,6 KAC – 120 166,50 13 130,1 91,4 Контроль 76,73 8 37,6 - NH4NO3 – 40 152,60 10 92,1 54,5 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 80 166,57 13 130,5 92,9 HCP _{0,5} общ. 5,26 5,64 6,13 HCP _{0,5} B (удобрение) </td <td></td> <td>KAC – 80</td> <td>121,77</td> <td>19</td> <td>135,9</td> <td>97,4</td>		KAC – 80	121,77	19	135,9	97,4
Винаноз – 40 109,33 10 68,4 29,7 Зырянка NH4NO3 – 80 159,60 12 115,2 76,5 3нрянка NH4NO3 – 120 162,30 12 114,1 72,4 KAC – 40 108,70 11 85,8 47,1 KAC – 80 164,87 13 128,3 89,6 KAC – 120 166,50 13 130,1 91,4 Контроль 76,73 8 37,6 - NH4NO3 – 40 152,60 10 92,1 54,5 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP _{0.5} общ. 5,26 5,64 6,13 HCP _{0.5} B (удобрение) 2,69 3,01 3,07 </td <td></td> <td>KAC – 120</td> <td>122,50</td> <td>20</td> <td>146,1</td> <td>107,6</td>		KAC – 120	122,50	20	146,1	107,6
Зырянка NH4NO3 – 80 159,60 12 115,2 76,5 3ырянка NH4NO3 – 120 162,30 12 114,1 72,4 KAC – 40 108,70 11 85,8 47,1 KAC – 80 164,87 13 128,3 89,6 KAC – 120 166,50 13 130,1 91,4 Контроль 76,73 8 37,6 - NH4NO3 – 40 152,60 10 92,1 54,5 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP _{0,5} общ. 5,26 5,64 6,13 HCP _{0,5} A (генотип) 4,26 3,61 4,23 HCP _{0,5} B (удобрение) 2,69 3,01 3,07		Контроль	77,77	8	38,7	-
Зырянка NH4NO3 – 120 162,30 12 114,1 72,4 КАС – 40 108,70 11 85,8 47,1 КАС – 80 164,87 13 128,3 89,6 КАС – 120 166,50 13 130,1 91,4 Контроль 76,73 8 37,6 - NH4NO3 – 40 152,60 10 92,1 54,5 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP _{0,5} общ. 5,26 5,64 6,13 HCP _{0,5} A (генотип) 4,26 3,61 4,23 HCP _{0,5} B (удобрение) 2,69 3,01 3,07		NH ₄ NO ₃ – 40	109,33	10	68,4	29,7
КАС – 40 108,70 11 85,8 47,1 КАС – 80 164,87 13 128,3 89,6 КАС – 120 166,50 13 130,1 91,4 Контроль 76,73 8 37,6 - NH4NO3 – 40 152,60 10 92,1 54,5 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP _{0,5} общ. 5,26 5,64 6,13 HCP _{0,5} А (генотип) 4,26 3,61 4,23 HCP _{0,5} В (удобрение) 2,69 3,01 3,07		NH ₄ NO ₃ – 80	159,60	12	115,2	76,5
КАС – 80 164,87 13 128,3 89,6 КАС – 120 166,50 13 130,1 91,4 Дельта 264 Контроль 76,73 8 37,6 - NH4NO3 – 40 152,60 10 92,1 54,5 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 КАС – 40 152,40 11 100,7 63,1 КАС – 80 166,57 13 126,9 89,3 КАС – 120 167,23 13 130,5 92,9 НСР _{0,5} общ. 5,26 5,64 6,13 НСР _{0,5} А (генотип) 4,26 3,61 4,23 НСР _{0,5} В (удобрение) 2,69 3,01 3,07	Зырянка	NH ₄ NO ₃ – 120	162,30	12	114,1	72,4
КАС – 120 166,50 13 130,1 91,4 Контроль 76,73 8 37,6 - NH ₄ NO ₃ – 40 152,60 10 92,1 54,5 NH ₄ NO ₃ – 80 164,70 12 115,8 78,2 NH ₄ NO ₃ – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP _{0,5} общ. 5,26 5,64 6,13 НСР _{0,5} А (генотип) 4,26 3,61 4,23 НСР _{0,5} В (удобрение) 2,69 3,01 3,07		KAC – 40	108,70	11	85,8	47,1
Дельта 264Контроль76,73837,6-Дельта 264NH4NO3 - 40152,601092,154,5NH4NO3 - 80164,7012115,878,2NH4NO3 - 120165,3312123,185,5KAC - 40152,4011100,763,1KAC - 80166,5713126,989,3KAC - 120167,2313130,592,9HCP _{0,5} общ.5,265,646,13НСР _{0,5} А (генотип)4,263,614,23НСР _{0,5} В (удобрение)2,693,013,07		KAC – 80	164,87	13	128,3	89,6
Дельта 264 NH ₄ NO ₃ – 40 152,60 10 92,1 54,5 NH ₄ NO ₃ – 80 164,70 12 115,8 78,2 NH ₄ NO ₃ – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP _{0,5} общ. 5,26 5,64 6,13 НСР _{0,5} A (генотип) 4,26 3,61 4,23 НСР _{0,5} B (удобрение) 2,69 3,01 3,07		KAC – 120	166,50	13	130,1	91,4
Дельта 264 NH4NO3 – 80 164,70 12 115,8 78,2 NH4NO3 – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP _{0,5} общ. 5,26 5,64 6,13 НСР _{0,5} А (генотип) 4,26 3,61 4,23 НСР _{0,5} В (удобрение) 2,69 3,01 3,07		Контроль	76,73	8	37,6	-
Дельта 264 NH4NO3 – 120 165,33 12 123,1 85,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP _{0,5} общ. 5,26 5,64 6,13 НСР _{0,5} А (генотип) 4,26 3,61 4,23 НСР _{0,5} В (удобрение) 2,69 3,01 3,07		NH ₄ NO ₃ – 40	152,60	10	92,1	54,5
264 INH4NO3 – 120 165,33 12 123,1 63,5 KAC – 40 152,40 11 100,7 63,1 KAC – 80 166,57 13 126,9 89,3 KAC – 120 167,23 13 130,5 92,9 HCP _{0,5} общ. 5,26 5,64 6,13 HCP _{0,5} A (генотип) 4,26 3,61 4,23 HCP _{0,5} B (удобрение) 2,69 3,01 3,07		$NH_4NO_3 - 80$	164,70	12	115,8	78,2
КАС – 40 152,40 11 100,7 63,1 КАС – 80 166,57 13 126,9 89,3 КАС – 120 167,23 13 130,5 92,9 НСР _{0,5} общ. 5,26 5,64 6,13 НСР _{0,5} А (генотип) 4,26 3,61 4,23 НСР _{0,5} В (удобрение) 2,69 3,01 3,07		NH ₄ NO ₃ – 120	165,33	12	123,1	85,5
КАС – 120 167,23 13 130,5 92,9 НСР _{0,5} общ. 5,26 5,64 6,13 НСР _{0,5} А (генотип) 4,26 3,61 4,23 НСР _{0,5} В (удобрение) 2,69 3,01 3,07	204	KAC – 40	152,40	11	100,7	63,1
НСР _{0,5} общ. 5,26 5,64 6,13 НСР _{0,5} А (генотип) 4,26 3,61 4,23 НСР _{0,5} В (удобрение) 2,69 3,01 3,07		KAC – 80	166,57	13	126,9	89,3
HCP _{0,5} A (генотип) 4,26 3,61 4,23 HCP _{0,5} B (удобрение) 2,69 3,01 3,07		KAC – 120	167,23	13	130,5	92,9
HCP _{0,5} B (удобрение) 2,69 3,01 3,07	HCP _{0,5} общ.		5,26	5,64	6	,13
	НСР _{0,5} А (генотип)		4,26	3,61	4	,23
HCP _{0,5} C (год) 2,61 2,92 3,01	HCP _{0,5} В (удобрение)		2,69	3,01	3	,07
	НС	CP _{0,5} C (год)	2,61	2,92	3	,01

Примечание. Индекс детерминации A (генотип) -26,2%, B (удобрения) -41,6%, C (год) -23%, AB -4,32, AC -1,68, BC -3,62, ABC -0,85.

Таблица 2 Химический состав плодов томата защищённого грунта в зависимости от применения азотных удобрений 2018-2020 гг.

Сорт	Вариант	Сухое вещество, %	Общий сахар, %	Витамин С, мг/100 г	Общая кис- лотность, %	Ликопен, мкг/100 г	Нитраты, мг/кг
	Контроль	5,61	2,38	8,96	0,42	2178	46
	NH ₄ NO ₃ – 40	6,84	3,69	11,79	0,51	2954	51
	NH ₄ NO ₃ – 80	6,96	3,96	13,56	0,53	2981	79
Флажок	NH ₄ NO ₃ – 120	6,61	3,81	13,69	0,53	2951	77
	KAC – 40	6,89	3,87	13,53	0,46	3115	89
	KAC – 80	7,03	4,11	13,91	0,48	3159	90
	KAC - 120	6,91	4,01	13,98	0,49	3187	99
	Контроль	5,82	2,94	16,80	0,38	2567	39
	NH ₄ NO ₃ – 40	6,50	3,69	17,38	0,46	3474	62
	NH ₄ NO ₃ – 80	6,51	3,83	17,93	0,51	3579	77
Девчата	NH ₄ NO ₃ – 120	6,30	3,82	17,05	0,51	3578	77
	KAC – 40	6,45	3,78	18,68	0,50	3772	82
	KAC – 80	6,57	3,86	19,03	0,51	3878	81
	KAC – 120	6,36	3,88	18,02	0,53	3876	87
	Контроль	6,25	2,89	7,02	0,42	2245	33
	NH ₄ NO ₃ – 40	8,39	4,31	11,21	0,55	2987	89
	NH ₄ NO ₃ – 80	8,57	4,59	12,60	0,62	2871	94
Зырянка	NH ₄ NO ₃ – 120	8,41	4,63	12,89	0,62	2978	93
	KAC – 40	8,56	4,36	12,61	0,46	2987	96
	KAC – 80	8,62	4,59	13,08	0,51	3012	114
	KAC - 120	8,62	4,63	13,12	0,54	3001	122
	Контроль	5,36	1,96	7,16	0,51	2789	52
	NH ₄ NO ₃ – 40	6,58	3,26	9,98	0,66	3326	92
Дельта 264	NH ₄ NO ₃ – 80	6,89	3,82	10,71	0,66	3369	99
	NH ₄ NO ₃ – 120	6,62	3,69	10,91	0,71	3489	106
	KAC – 40	6,71	3,96	10,26	0,64	3677	103
	KAC – 80	6,86	4,01	11,23	0,67	3691	134
	KAC - 120	6,63	4,16	11,34	0,67	3742	146
HCP _{0,5} A		0,37	0,43	0,29	0,16	2,36	0,36
HCP _{0,5} B		0,22	0,34	0,23	0,12	1,12	0,26
HCP _{0,5} AB		0,52	0,63	0,55	0,22	1,46	0,46

Изучая биохимический состав плодов по сортам, можно с уверенностью сказать, что наиболее оптимальными были сорта Зырянка и Девчата, в которых были отмечены наивысшие показатели сухого вещества и общего сахара — 8,62-5,59%, а также содержание витамина С в среднем превосходит показатели других сортов на 50% и более. Оптимальное сочетание общей кислотности по отношению к сахарам делает эти сорта предположительно наиболее вкусными, что было подтверждено дегустационной оценкой плодов в периоды учётов, а также на выставках достижений университета.

Применение азотных удобрений, в частности увеличение их нормы внесения, оказывает

непосредственное влияние на содержание нитратов в плодах до 60% и выше. При этом в наших исследованиях все варианты по содержанию нитратов существенно ниже предельно допустимой нормы (300 мг/кг). Наиболее высокое содержание нитратов было отмечено в плодах сорта Дельта 264, где даже на контроле зафиксировано содержание нитратов 52 мг/кг, а по обработанному фону эта цифра колебалась от 92 и до 146 мг/кг. Минимальное содержание нитратов отмечено в плодах сорта Девчата, где на контроле было зафиксировано 39 мг/кг, а на обработанном фоне эта цифра не превышала 87 мг/кг (табл. 2, рис. 2).

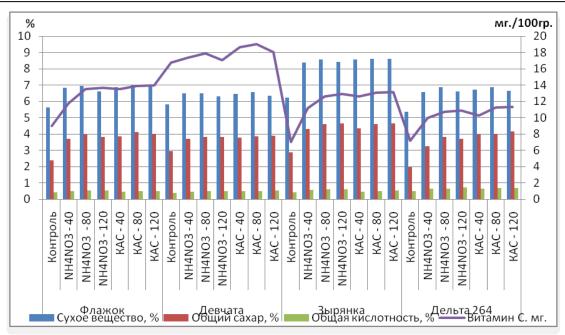


Рис. 2. Биохимический состав томатов защищённого грунта в зависимости от условий питания

Таблица 3 Эффективность применения азотных удобрений на сортах томатов открытого грунта (2018-2020 гг.)

Сорт	Ропионт	Стру	Урожа	йность, т/га	
	Вариант Фон Р ₄₀ , К ₆₀	средняя масса плода, г	количество плодов на 1 растении, шт.	средняя	прибавка к контролю
	Контроль	59,0	12	28,4	-
	NH ₄ NO ₃ – 40	89,0	14	50,3	21,9
	NH ₄ NO ₃ – 80	94,1	15	60,6	32,2
Боец	NH ₄ NO ₃ – 120	101,2	15	62,6	34,2
	KAC – 40	96,2	15	56,6	28,4
	KAC – 80	106,1	16	68,3	39,9
	KAC - 120	107,0	15	66,1	37,7
	Контроль	80,6	8	25,6	-
	NH ₄ NO ₃ – 40	142,6	11	61,7	36,1
	NH ₄ NO ₃ – 80	153,8	12	73,1	47,5
Канопус	NH ₄ NO ₃ – 120	160,8	11	74,3	48,7
•	KAC – 40	151,8	12	76,4	50,8
	KAC – 80	173,1	13	91,9	66,3
	KAC - 120	173,9	13	93,4	67,8
	Контроль	108,7	13	55,3	-
	NH ₄ NO ₃ – 40	151,6	14	87,3	32,2
	NH ₄ NO ₃ – 80	157,8	15	97,1	41,8
Рая	NH ₄ NO ₃ – 120	164,4	14	94,7	39,4
	KAC – 40	154,4	15	93,2	37,9
	KAC – 80	164,7	16	104,9	49,6
	KAC - 120	168,9	15	105,1	49,7
HCP _{0,5} общ.		4,67	1,82		7,1
НСР _{0,5} А (генотип)		3,86	1,67		6,3
НСР _{0,5} (удобрения)		2,94	1,04	4,4	
HCP _{0,5} C (год)		2,96	1,04		4,1

Примечание. Индекс детерминации A (генотип) - 32,42%, B (удобрения) - 38,5%, C (год) - 26%, AB - 2,15, AC - 1,68, BC - 2,13, ABC - 0,57.

За годы исследования томата в открытом грунте установлено, что азотные удобрения существенно влияют на структуру урожая томатов и продуктивность растений в целом. Так, в среднем прибавка по урожайности к контролю по сорту Боец составила от 21,9 до 39,9 т/га, по сорту Канопус — 36,1-67,8 т/га, сорту Рая — 32,2-49,7 т/га. При этом наиболее оптимальными являются жидкие азотные удобрения в дозе 80 кг д.в/га (табл. 3).

Из изучаемых сортов наиболее урожайным является сорт Рая, который в условиях открытого грунта позволяет получить урожай до 112 т/га. Кроме того, данный сорт является наиболее пластичным, он лучше адаптирован к условиям Сибири и способен давать урожай даже при минимальном питательном режиме.

Применение азотных удобрений на томатах открытого грунта по отношению к контролю спо-

собствовало росту сухого вещества в среднем по сортам на 35% в вариантах с аммиачной селитрой и 45% в вариантах с КАС-32, общего сахара – на 74-83% и витамина С – 37-42% соответственно. При этом, как и на томатах защищённого грунта, разница между последовательными вариантами обработанного фона в среднем составляла до 10-12%. На максимальных дозах применения удобрений N₁₂₀ отмечалось снижение сухого вещества до 5% по отношению к N₈₀. Применение азотных удобрений также вызывало рост общей кислотности в среднем до 16%, что на общем фоне роста сахаров уже не имело существенного значения. Форма азотных удобрений и в частности КАС-32 также влияли на прирост показателей химического состава, что в среднем по отношению к аммиачной селитре составляло до 10% (табл. 4, рис. 3).

Таблица 4 Химический состав плодов томата открытого грунта в зависимости от применения азотных удобрений (2018-2020 гг.)

Сорт	Вариант	Сухое	Общий	Витамин	Общая кис-	Ликопен,	Нитраты,
		вещество, %	сахар, %	С, мг/100 г	лотность, %	мкг/100 г	мг/кг
	Контроль	4,24	1,72	9,93	0,59	1987	21
	$NH_4NO_3 - 40$	5,62	3,54	12,51	0,61	2456	46
	$NH_4NO_3 - 80$	6,01	4,17	14,14	0,63	2567	49
Боец	NH ₄ NO ₃ – 120	5,92	4,41	14,28	0,63	2591	49
	KAC – 40	6,79	4,07	14,03	0,62	2974	68
	KAC – 80	7,03	4,31	14,71	0,65	3012	70
	KAC - 120	6,91	4,39	14,93	0,68	3078	72
	Контроль	4,67	2,11	9,42	0,51	2067	29
	NH ₄ NO ₃ – 40	5,38	4,32	13,11	0,71	2874	46
	NH ₄ NO ₃ – 80	5,54	4,61	13,64	0,75	3079	49
Канопус	NH ₄ NO ₃ – 120	5,36	4,76	14,06	0,74	3128	49
	KAC – 40	5,45	4,58	14,68	0,61	3222	62
	KAC – 80	5,59	4,96	14,93	0,64	3278	71
	KAC – 120	5,36	5,02	14,93	0,67	3376	77
	Контроль	5,35	3,89	12,02	0,44	2347	19
	NH ₄ NO ₃ – 40	7,69	4,82	15,21	0,45	3012	59
	NH ₄ NO ₃ – 80	8,27	4,89	15,94	0,48	3171	64
Рая	NH ₄ NO ₃ – 120	8,11	4,93	15,93	0,48	3178	63
	KAC – 40	8,16	4,96	15,41	0,46	3287	66
	KAC – 80	8,42	5,09	15,98	0,49	3342	71
	KAC – 120	8,21	5,13	16,12	0,52	3416	73
ŀ	HCP _{0,5} A	0,17	0,23	0,19	0,18		0,46
	HCP _{0,5} B	0,22	0,24	0,23	0,18		0,36
Н	CP _{0,5} AB	0,32	0,33	0,45	0,32		0,62

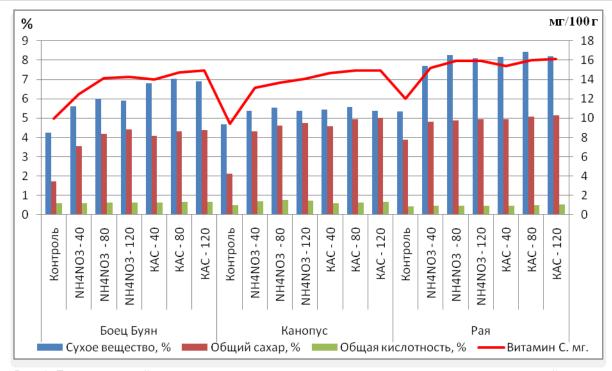


Рис. 3. Биохимический состав томатов открытого грунта в зависимости от условий питания

Среди изучаемых сортов томата открытого грунта наибольшее количество сухого вещества – 8,21%, общего сахара – 5,13% и витамина С – 16,12 мг/100 г получено на Рае. Кроме того, по данному сорту наблюдается и самое низкое содержание кислот – от 0,44 до 0,52%. При соотношении к общему сахару делает данные плоды наиболее сладкими и вкусными, что даёт все основания рекомендовать их для употребления в свежем виде.

Наименьшие изменения по влиянию азотных удобрений на химический состав плодов отмечены на сорте Канопус, где в зависимости от варианта сухое вещество варьировало от 4,67% на контроле и до 5,59% на обработанном фоне, а максимальные показатели по общему сахару составили 5,02%, витамина С — всего 14,93 мг/100 г, что на общем фоне кислотности 0,67% делало плоды данного сорта по отношению к другим далеко не привлекательными (табл. 4, рис. 3).

Применение азотных удобрений на томатах открытого грунта также оказывало непосредственное влияние на содержание нитратов в плодах. В наших исследованиях все варианты по содержанию нитратов также существенно ниже предельно допустимой нормы (для открытого грунта — 150 мг/кг). Из изучаемых сортов наиболее высокое содержание нитратов было отмечено в плодах сорта Канопус, где на контроле было отмечено содержание нитратов

29 мг/кг, а по максимальным дозам оно достигло 77 мг/кг. По вариантам сорта Боец и Рая наблюдался рост нитратов в плодах, незначительно уступая при этом показателям сорта Канопус.

Выводы

- 1. Повышение элементов структурных показателей томатов защищённого грунта существенно сказалось и на самой урожайности культуры, прибавка которой в среднем по годам составляла от 29,7 и до 107,6 т/га. Максимально отзывчивым на применение азотных удобрений был сорт Девчата, который все годы исследований обеспечивал стабильную прибавку урожая до 81,6 т/га по аммиачной селитре и до 107,6 т/га по КАС-32, выход товарной продукции с которого в среднем на 16-17% выше, чем по Зырянке и Дельте 264, и на 27% выше, чем по Флажку.
- 2. Наибольшее увеличение структурных показателей в открытом грунте отмечено на сорте Канопус, что в комплексе позволило получить до 88 т/га, при этом максимальные показатели зафиксированы в вариантах с применением КАС-32. Прибавка по урожайности к контролю по сорту Боец составила от 21,9 до 39,9 т/га, по сорту Канопус — 36,1-67,8 и сорту Рая — 32,2-49,7 т/га. При этом наиболее оптимальными являются жидкие азотные удобрения в дозе 80 кг д.в/га.

- 3. При применении азотных удобрений в закрытом грунте по всем сортам и вариантам по отношению к контролю выявлена положительная тенденция роста сухого вещества (23% по аммиачной селитре и на 25% по КАС-32), общего сахара (55% по аммиачной селитре и 61% по КАС-32) и витамина С (33 и 41% соответственно). Нормы внесения азотных удобрений оказывают влияние на содержание нитратов в плодах до 60% и выше.
- 4. Внесение азотных удобрений в открытом грунте по отношению к контролю способствовало росту сухого вещества (на 35% в вариантах с аммиачной селитрой и 45% в вариантах с КАС-32), общего сахара на 74 и 83% и витамина С на 37 и 42% соответственно.
- В результате проведения исследований установлено, что азотное питание значительно влияет на основные показатели состава плодов, при этом тенденция и характер влияния независимы от условий выращивания.

Библиографический список

- 1. Овощные культуры в Сибири / Е. Г. Гринберг, В. Н. Губко, Э. Ф. Витченко, Т. Н. Мелешкина. Новосибирск, 2004. 397 с. Текст: непосредственный.
- 2. Алпатьев, А. В. Помидоры / А. В. Алпатьев. Москва: Колос, 1981. 304 с. Текст: непосредственный.
- 3. Fatima, T., Mattoo, A.K., Rivera-Domínguez, M., Troncoso-Rojas, R., Tiznado-Hernández, M.-E. and Handa, A.K. (2009). Tomato. In Compendium of Transgenic Crop Plants (eds C. Kole and T.C. Hall). https://doi.org/10.1002/9781405181099.k0601.
- 4. Петручук, Т. Е. Изучение действия термического фактора на продуктивность томата / Т. Е. Петручук. Текст: непосредственный // Системы интенсивного культивирования растений / Всесоюзный НИИ удобрений и агропочвоведения им. Д. Н. Прянишникова. Ленинград, 1987. С. 41-45.
- 5. Семендяева, Н. В. Почвы Новосибирской области и их сельскохозяйственное использование: учебное пособие / Н. В. Семендяева, Л. П. Галеева, А. Н. Мармулев; Новосиб. гос. аграр. ун-т. Новосибирск, 2010. 187 с. Текст: непосредственный.
- 6. Продукция KAO A3OT. Характеристики и описание. URL: http://www.sds-azot.ru/ru/

- potreb/produktsiya/produktsiya-koao-azot (дата обращения: 22.06.2021). Текст: электронный.
- 7. Применение карбамид-аммиачной смеси под основные сельскохозяйственные культуры: рекомендации / Ф. Н. Леонов, В. Н. Емельянова, Д. М. Андреева [и др.]. Минск: Учебнометодический центр Минсельхозпрода, 2004. 13 с. Текст: непосредственный.
- 8. Государственный реестр селекционных достижений, допущенных к использованию. Том 1. URL: https://gossortrf.ru/ (дата обращения: 12.06.21). Текст: электронный.
- 9. Методика полевого опыта в овощеводстве / С. С. Литвинов. Москва, 2012 648 с. Текст: непосредственный.

References

- 1. Ovoshchnye kultury v Sibiri / E.G. Grinberg, V.N. Gubko, E.F. Vitchenko, T.N. Meleshkina. Novosibirsk, 2004. 397 s.
- 2. Alpatev A.V. Pomidory / A.V. Alpatev. Moskva: Kolos, 1981. 304 s.
- 3. Fatima, T., Mattoo, A.K., Rivera-Domínguez, M., Troncoso-Rojas, R., Tiznado-Hernández, M.-E. and Handa, A.K. (2009). Tomato. In Compendium of Transgenic Crop Plants (eds C. Kole and T.C. Hall). https://doi.org/10.1002/9781405181099.k0601.
- 4. Petruchuk T.E. Izuchenie deistviia termicheskogo faktora na produktivnost tomata / T.E. Petruchuk // Sistemy intensivnogo kultivirovania rastenii / Vsesoiuznyi NII udobrenii i agropochvovedeniia im. D.N. Prianishnikova. Leningrad, 1987. S. 41-45.
- 5. Semendiaeva N.V. Pochvy Novosibirskoi oblasti i ikh selskokhoziaistvennoe ispolzovanie: ucheb. posobie / Semendiaeva N.V., L.P. Galeeva, A.N. Marmulev; Novosib. gos. agrar. un-t. Novosibirsk, 2010. 187 s.
- 6. Produktsiia KAO AZOT. Kharakteristiki i opisanie. http://www.sds-azot.ru/ru/potreb/produktsiya/produktsiya-koao-azot (data obrashcheniia: 22.06.2021).
- 7. Primenenie karbamid-ammiachnoi smesi pod osnovnye selskokhoziaistvennye kultury: rekomendatsii / F.N. Leonov, V.N. Emelianova, D.M. And-reeva, G.A. Zeziulina, I.V. Shibanova, A.K. Zolotar, M.S. Brilev, V.G. Smolskii, E.B. Losevich, S.I. lurgel, N.E. Shishko, V.N. Alekseev. Minsk: Uchebno-metodicheskii tsentr Minselkhozproda, 2004. 13 s.

- 8. Gosudarstvennyi reestr selektsionnykh dostizhenii dopushchennykh k ispolzovaniiu (Tom 1) [Elektronnyi resurs] https://gossortrf.ru/ (data obrashcheniia: 12.06.21).
- 9. Metodika polevogo opyta v ovoshchevodstve / S.S. Litvinov. Moskva. 2012. 648 s.

УДК 632.937.15 **А.В. Малкова, А.Н. Иркитова**, **Д.Е. Дудник**, **Е.Н. Каргашилова**, **И.А. Функ** DOI: 10.53083/1996-4277-2021-205-11-40-43 **A.V. Malkova**, **A.N. Irkitova**, **D.Ye. Dudnik**, **Ye.N. Kargashilova**, **I.A. Funk**

АНТИФУНГАЛЬНАЯ АКТИВНОСТЬ БАКТЕРИЙ РОДА BACILLUS ПО ОТНОШЕНИЮ К ФИТОПАТОГЕНУ ALTERNARIA SP.

ANTIFUNGAL ACTIVITY OF THE GENUS BACILLUS BACTERIA AS AGAINST THE PHYTOPATHOGEN ALTERNARIA SP.

Ключевые слова: Bacillus, антифунгальная активность, Alternaria, альтернариоз, защита растений, Bacillus pumilus, Bacillus licheniformis.

Альтернариозы, вызываемые микроскопическими грибками рода Alternaria, относятся к широко распространенным заболеваниям сельскохозяйственных и декоративных растений. Российские и зарубежные ученые активно разрабатывают биологические препараты на основе антагонистически активных микроорганизмов. Но ситуация по альтернариозу все еще остается неблагоприятной. Целью исследования было изучить антифунгальную активность новых штаммов рода Bacillus по отношению к фитопатогену Alternaria sp. Для определения антагонистической активности 8 ризосферных штаммов бацилл (B. pumilus 4, B. pumilus 5, B. pumilus 6, B. pumilus 7, B. licheniformis 8, B. licheniformis 9, B. licheniformis 10 и В. pumilus 16) применяли метод агаровых блоков. Все исследуемые штаммы проявили себя как антагонисты по отношению к альтернарии. На 14-е сутки эксперимента диаметр культуры Alternariasp. В контроле 85,83±8,78 мм. При этом в чашках с газонами бацилл были зафиксированы следующие значения диаметра мицелия фитопатогена: *B. pumilus* 4 - 10,00±0,87 мм, B. pumilus 5 - $12,17\pm0,76$ MM, B. pumilus 6 -11,33±1,26 мм, *B. pumilus* 7 – 8,00±3,00 мм, B. pumilus 16 - 7,67±0,29 мм. Со всеми штаммами В. licheniformis гриб Alternariasp. не вырос за пределы блока диаметром 5 мм. Бактерии вида В. licheniformis обладали более выраженным антифунгальным действием (100%), чем штаммы вида В. pumilus (91,13-96,70%). Штаммы B. licheniformis 8, 9, 10 и B. pumilus 16, 7, 4 в первую очередь рекомендованы для включе-

Малкова Ангелина Владимировна, аспирант, м.н.с., ФГБОУ ВО «Алтайский государственный университет», г. Барнаул, Российская Федерация, e-mail: gelishka96@mail.ru.

ния в состав биопрепарата для защиты растений от альтернариоза.

Keywords: bacillus, antifungal activity, Alternaria, Alternaria blight, plant protection, Bacillus pumilus, Bacillus licheniformis.

Alternaria blights caused by microscopic fungi of the Alternaria genus are widespread diseases of crops and ornamental plants. Russian and foreign scientists take an active part in developing biological products based on antagonistically active microorganisms. However, the situation regarding Alternaria blight is still unfavorable. The research goal was to study the antifungal activity of the genus Bacillus strains against the phytopathogen Alternaria sp. The agar block method was used to determine the antagonistic activity of 8 rhizospheric bacilli strains (B. pumilus 4, B. pumilus 5, B. pumilus 6, B. pumilus 7, B. licheniformis 8. B. licheniformis 9. B. licheniformis 10. and B. pumilus 16). All investigated strains showed themselves as antagonists in relation to Alternaria. On the 14th day of the experiment, the diameter of the Alternaria sp. in the control was 85.83 ± 8.78 mm. The following values of the phytopathogen mycelium diameter were recorded in dishes with bacilli: B. pumilus 4 - 10.00 ± 0.87 mm, B. pumilus 5 - 12.17 ± 0.76 mm, B. pumilus 6 - 11.33 ± 1.26 mm, B. pumilus 7 - 8.00 \pm 3.00 mm, B. pumilus 16 - 7.67 \pm 0.29 mm. Alternaria sp. did not grow beyond the 5 mm diameter block with all B. licheniformis strains. Bacteria of the B. licheniformis species had a more pronounced antifungal effect (100%) than the B. pumilus strains (91.13-96.70%). B. licheniformis 8, 9, 10 and B. pumilus 16, 7, 4 strains are primarily recommended for inclusion in a biological plant protection product against Alternaria blight.

Malkova Angelina Vladimirovna, post-graduate student, Junior Staff Scientist, Altai State University, Barnaul, Russian Federation, e-mail: gelishka96@mail.ru.